`

【转载】Java多线程二(Java线程池的分析和使用)

阅读更多

1. 引言

合理利用线程池能够带来三个好处。

  • 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
  • 提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
  • 提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。但是要做到合理的利用线程池,必须对其原理了如指掌。

2. 线程池的使用

线程池的创建

我们可以通过ThreadPoolExecutor来创建一个线程池。

new ThreadPoolExecutor(corePoolSize, maximumPoolSize,keepAliveTime, milliseconds,runnableTaskQueue, handler);

创建一个线程池需要输入几个参数:

  • corePoolSize(线程池的基本大小):当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其他空闲的基本线程能够执行新任务也会创建线程,等到需要执行的任务数大于线程池基本大小时就不再创建。如果调用了线程池的prestartAllCoreThreads方法,线程池会提前创建并启动所有基本线程。
  • runnableTaskQueue(任务队列):用于保存等待执行的任务的阻塞队列。 可以选择以下几个阻塞队列。
    • ArrayBlockingQueue:是一个基于数组结构的有界阻塞队列,此队列按 FIFO(先进先出)原则对元素进行排序。
    • LinkedBlockingQueue:一个基于链表结构的阻塞队列,此队列按FIFO (先进先出) 排序元素,吞吐量通常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列。
    • SynchronousQueue:一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQueue,静态工厂方法Executors.newCachedThreadPool使用了这个队列。
    • PriorityBlockingQueue:一个具有优先级的无限阻塞队列。
  • maximumPoolSize(线程池最大大小):线程池允许创建的最大线程数。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。值得注意的是如果使用了无界的任务队列这个参数就没什么效果。
  • ThreadFactory:用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字。
  • RejectedExecutionHandler(饱和策略):当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是AbortPolicy,表示无法处理新任务时抛出异常。以下是JDK1.5提供的四种策略。
    • AbortPolicy:直接抛出异常。
    • CallerRunsPolicy:只用调用者所在线程来运行任务。
    • DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。
    • DiscardPolicy:不处理,丢弃掉。
    • 当然也可以根据应用场景需要来实现RejectedExecutionHandler接口自定义策略。如记录日志或持久化不能处理的任务。
  • keepAliveTime(线程活动保持时间):线程池的工作线程空闲后,保持存活的时间。所以如果任务很多,并且每个任务执行的时间比较短,可以调大这个时间,提高线程的利用率。
  • TimeUnit(线程活动保持时间的单位):可选的单位有天(DAYS),小时(HOURS),分钟(MINUTES),毫秒(MILLISECONDS),微秒(MICROSECONDS, 千分之一毫秒)和毫微秒(NANOSECONDS, 千分之一微秒)。

向线程池提交任务

我们可以使用execute提交的任务,但是execute方法没有返回值,所以无法判断任务是否被线程池执行成功。通过以下代码可知execute方法输入的任务是一个Runnable类的实例。

 

threadsPool.execute(new Runnable() {
@Override

public void run() {

// TODO Auto-generated method stub

}

});

 

我们也可以使用submit 方法来提交任务,它会返回一个future,那么我们可以通过这个future来判断任务是否执行成功,通过future的get方法来获取返回值,get方法会阻塞住直到任务完成,而使用get(long timeout, TimeUnit unit)方法则会阻塞一段时间后立即返回,这时有可能任务没有执行完。

 

try {

Object s = future.get();

} catch (InterruptedException e) {

// 处理中断异常

} catch (ExecutionException e) {

// 处理无法执行任务异常

} finally {

// 关闭线程池

executor.shutdown();

}

 

 

线程池的关闭

    我们可以通过调用线程池的shutdown或shutdownNow方法来关闭线程池,它们的原理是遍历线程池中的工作线程,然后逐个调用线程的interrupt方法来中断线程,所以无法响应中断的任务可能永远无法终止。但是它们存在一定的区别,shutdownNow首先将线程池的状态设置成STOP,然后尝试停止所有的正在执行或暂停任务的线程,并返回等待执行任务的列表,而shutdown只是将线程池的状态设置成SHUTDOWN状态,然后中断所有没有正在执行任务的线程。

    只要调用了这两个关闭方法的其中一个,isShutdown方法就会返回true。当所有的任务都已关闭后,才表示线程池关闭成功,这时调用isTerminaed方法会返回true。至于我们应该调用哪一种方法来关闭线程池,应该由提交到线程池的任务特性决定,通常调用shutdown来关闭线程池,如果任务不一定要执行完,则可以调用shutdownNow。

3. 线程池的分析

流程分析:线程池的主要工作流程如下图:



 

从上图我们可以看出,当提交一个新任务到线程池时,线程池的处理流程如下:

  1. 首先线程池判断基本线程池是否已满?没满,创建一个工作线程来执行任务。满了,则进入下个流程。
  2. 其次线程池判断工作队列是否已满?没满,则将新提交的任务存储在工作队列里。满了,则进入下个流程。
  3. 最后线程池判断整个线程池是否已满?没满,则创建一个新的工作线程来执行任务,满了,则交给饱和策略来处理这个任务。

源码分析。上面的流程分析让我们很直观的了解了线程池的工作原理,让我们再通过源代码来看看是如何实现的。线程池执行任务的方法如下:

public void execute(Runnable command) {

if (command == null)

throw new NullPointerException();

//如果线程数小于基本线程数,则创建线程并执行当前任务

if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) {

//如线程数大于等于基本线程数或线程创建失败,则将当前任务放到工作队列中。

if (runState == RUNNING && workQueue.offer(command)) {

if (runState != RUNNING || poolSize == 0)

ensureQueuedTaskHandled(command);

}

//如果线程池不处于运行中或任务无法放入队列,并且当前线程数量小于最大允许的线程数量,则创建一个线程执行任务。

else if (!addIfUnderMaximumPoolSize(command))

//抛出RejectedExecutionException异常

reject(command); // is shutdown or saturated

}

}

 

 

工作线程。线程池创建线程时,会将线程封装成工作线程Worker,Worker在执行完任务后,还会无限循环获取工作队列里的任务来执行。我们可以从Worker的run方法里看到这点:

 

public void run() {

     try {

           Runnable task = firstTask;

           firstTask = null;

            while (task != null || (task = getTask()) != null) {

                    runTask(task);

                    task = null;

            }

      } finally {

             workerDone(this);

      }

}

 

 

4. 合理的配置线程池

要想合理的配置线程池,就必须首先分析任务特性,可以从以下几个角度来进行分析:

  1. 任务的性质:CPU密集型任务,IO密集型任务和混合型任务。
  2. 任务的优先级:高,中和低。
  3. 任务的执行时间:长,中和短。
  4. 任务的依赖性:是否依赖其他系统资源,如数据库连接。

    任务性质不同的任务可以用不同规模的线程池分开处理。CPU密集型任务配置尽可能小的线程,如配置Ncpu+1个线程的线程池。IO密集型任务则由于线程并不是一直在执行任务,则配置尽可能多的线程,如2*Ncpu。混合型的任务,如果可以拆分,则将其拆分成一个CPU密集型任务和一个IO密集型任务,只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐率要高于串行执行的吞吐率,如果这两个任务执行时间相差太大,则没必要进行分解。我们可以通过Runtime.getRuntime().availableProcessors()方法获得当前设备的CPU个数。

    优先级不同的任务可以使用优先级队列PriorityBlockingQueue来处理。它可以让优先级高的任务先得到执行,需要注意的是如果一直有优先级高的任务提交到队列里,那么优先级低的任务可能永远不能执行。

执行时间不同的任务可以交给不同规模的线程池来处理,或者也可以使用优先级队列,让执行时间短的任务先执行。

依赖数据库连接池的任务,因为线程提交SQL后需要等待数据库返回结果,如果等待的时间越长CPU空闲时间就越长,那么线程数应该设置越大,这样才能更好的利用CPU。

    建议使用有界队列,有界队列能增加系统的稳定性和预警能力,可以根据需要设大一点,比如几千。有一次我们组使用的后台任务线程池的队列和线程池全满了,不断的抛出抛弃任务的异常,通过排查发现是数据库出现了问题,导致执行SQL变得非常缓慢,因为后台任务线程池里的任务全是需要向数据库查询和插入数据的,所以导致线程池里的工作线程全部阻塞住,任务积压在线程池里。如果当时我们设置成无界队列,线程池的队列就会越来越多,有可能会撑满内存,导致整个系统不可用,而不只是后台任务出现问题。当然我们的系统所有的任务是用的单独的服务器部署的,而我们使用不同规模的线程池跑不同类型的任务,但是出现这样问题时也会影响到其他任务。

5. 线程池的监控

通过线程池提供的参数进行监控。线程池里有一些属性在监控线程池的时候可以使用

  • taskCount:线程池需要执行的任务数量。
  • completedTaskCount:线程池在运行过程中已完成的任务数量。小于或等于taskCount。
  • largestPoolSize:线程池曾经创建过的最大线程数量。通过这个数据可以知道线程池是否满过。如等于线程池的最大大小,则表示线程池曾经满了。
  • getPoolSize:线程池的线程数量。如果线程池不销毁的话,池里的线程不会自动销毁,所以这个大小只增不+ getActiveCount:获取活动的线程数。

通过扩展线程池进行监控。通过继承线程池并重写线程池的beforeExecute,afterExecute和terminated方法,我们可以在任务执行前,执行后和线程池关闭前干一些事情。如监控任务的平均执行时间,最大执行时间和最小执行时间等。这几个方法在线程池里是空方法。如:

protected void beforeExecute(Thread t, Runnable r) { }

 

6.Executor框架

java.util.concurrent 包中包含灵活的线程池实现,但是更重要的是,它包含用于管理实现 Runnable 的任务的执行的整个框架。该框架称为 Executor 框架。

    Executor 接口相当简单。它描述将运行 Runnable 的对象:

public interface Executor {
  void execute(Runnable command);
}

 

    任务运行于哪个线程不是由该接口指定的,这取决于使用的 Executor 的实现。它可以运行于后台线程,如 Swing 事件线程,或者运行于线程池,或者调用线程,或者新的线程,它甚至可以运行于其他 JVM!通过同步的 Executor 接口提交任务,从任务执行策略中删除任务提交。Executor 接口独自关注任务提交 -- 这是Executor 实现的选择,确定执行策略。这使在部署时调整执行策略(队列限制、池大小、优先级排列等等)更加容易,更改的代码最少。

    java.util.concurrent 中的大多数 Executor 实现还实现 ExecutorService 接口,这是对 Executor 的扩展,它还管理执行服务的生命周期。这使它们更易于管理,并向生命可能比单独 Executor 的生命更长的应用程序提供服务。

public interface ExecutorService extends Executor {
  void shutdown();
  List shutdownNow();
  boolean isShutdown();
  boolean isTerminated();
  boolean awaitTermination(long timeout,
                           TimeUnit unit);
  // other convenience methods for submitting tasks
}

 

Executor

    java.util.concurrent 包包含多个 Executor 实现,每个实现都实现不同的执行策略。什么是执行策略?执行策略定义何时在哪个线程中运行任务,执行任务可能消耗的资源级别(线程、内存等等),以及如果执行程序超载该怎么办。

    执行程序通常通过工厂方法例示,而不是通过构造函数。Executors 类包含用于构造许多不同类型的 Executor 实现的静态工厂方法:

    • Executors.newCachedThreadPool() 创建不限制大小的线程池,但是当以前创建的线程可以使用时将重新使用那些线程。如果没有现有线程可用,将创建新的线程并将其添加到池中。使用不到 60 秒的线程将终止并从缓存中删除。

    • Executors.newFixedThreadPool(int n) 创建线程池,其重新使用在不受限制的队列之外运行的固定线程组。在关闭前,所有线程都会因为执行过程中的失败而终止,如果需要执行后续任务,将会有新的线程来代替这些线程。

    • Executors.newSingleThreadExecutor() 创建 Executor,其使用在不受限制的队列之外运行的单一工作线程,与 Swing 事件线程非常相似。保证顺序执行任务,在任何给定时间,不会有多个任务处于活动状态。

 

7. 参考资料

  • Java并发编程实战。
  • JDK1.6源码

原文链接:

聊聊并发(三)Java线程池的分析和使用

java.util.concurrent介绍

  • 大小: 64.4 KB
分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics